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Abstract— RL researches on exploration has been centered
around Atari-games and control problems within the Mu-
joco environment. Mutual Information State Intrinsic Con-
trol(MUSIC) is one of the first RL algorithm with intrinsically
motivated exploration strategy that proved successful in robotic
manipulation tasks. MUSIC utilizes agent-surrounding state
separation to compute mutual information between the two and
use it as an intrinsic motivation(or a proxy for prioritization
coefficient). While Soft-Actor-Critic version of the algorithm is
better performing than its Deep Deterministic Policy Gradient
version, having a “dense” stochastic policy(as is used in SAC)
seems to hinder its performance in certain task. Considering
that too much stochasticity in its policy may hinder its appli-
cability in real situation performance of robotic manipulation
task, this project utilizes Tsallis Entropy Regularization to the
MUSIC algorithm and shows improvements in its performance
in FetchPush-v1, FetchSlide-v1, FetchPickandPlace-v1 tasks.

I. INTRODUCTION

Reinforcement learning(RL) combined with a powerful
function approximators like neural network ha shown success
on challenging sequential decision making problems. Final
objective of RL is to maximize the expected reward given
a policy. Model-free RL algorithms aims to learn a policy
that effectively performs a given task given the current state
and the reward that is resulted from certain actions without
any model formation of the environment, whereas model-
based RL constructs its own dynamics model to evaluate its
policy and plan accordingly. Reinforcement learning requires
a meticulate control of the exploration-exploitation trade-off
- an agent may choose to take actions that the agent already
knows to be rewarding in light of the past action-reward
transitions or to take actions that the agent is unsure which
result it will bring about. New actions that were unexplored
before carries a potential of bigger results, and thus a better
trajectory and outcome, but the agent would have to pay the
opportunity cost of taking the ’already known good’ action.

Various benchmarks and experimental environments
were providing including the Arcade Learning
Environment(ALE)[8], Mujoco environment[43], D4RL[16],
Raisim, and was used widely to measure the extent to which
agents can task various techniques to maximize the expected
reward. Deep Q-Network was the first to effectively deal
with raw Pixel Images and still learn a powerful policy in
the ALE. [29], [39], [40], [18] accelerated the dimensions
in which reinforcement learning could be applied - in terms
of continuous control, faster convergence, higher entropy,
higher state dimensions, etc. [18] introduced and entropy
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term H(π(a|s)) into the loss function, encouraging the
policy to take diverse actions when given a state. Moreover,
Prioritized Experience Replay [38], Hindsight Experience
Replay[2] added colors to the use of replay buffer in
accelerating learning and stimulating convergence.

Intrinsic motivation has seen significant success as a guide
for exploration in sparse reward environments. Since external
rewards rarely do appear and given to the agent to learn
about the environment, there were increasing need to develop
a internal mechanism that would drive the agent to go to
the unexplored areas (or states). Count-based methods were
among the first attempts to [9], [31] record the number
certain state was visited. With raw pixel inputs, density mod-
els were used to group states together. Such methodology
was improved in [42] where hashing was used. Curiosity
based models[33], [10] used forward dynamics models based
on [19]. Self-supervised learning[34] and ensembles also
improved its performance.

Recent literature on unsupervised representation learning
generally focuses on extracting latent representation maxi-
mizing an approximate lower bound on the mutual informa-
tion between the code and the data. [7] aim at maximizing
the approximation of mutual information between latent code
and the raw data, estimating the mutual information with
neural networks Donsker and Varadhan estimation to learn
better generative models. [20] builds on the idea and trains a
decoder-free encoding representation maximizing the mutual
information between the input image and the representation.
However, mutual information itself has not been applied to
estimate the change itself in the state that is caused by agent’s
interaction with the environment. Furthermore, mutual infor-
mation proved useful in [46] with robotic manipulation tasks.

Robots were originally designed to assist or replace
humans by performing repetitive or dangerous tasks that
humans would not normally prefer or could not perform due
to physical limitations imposed by extreme environments.
These include the limited accessibility of long, narrow pipes
underground, the anatomical location of certain minimally
invasive surgical procedures, and objects on the ocean floor,
for example. With the continuous development of machines,
sensing technology, intelligent control and other modern
technologies, robots have improved their autonomy capa-
bilities and become more agile. Today, commercial and
industrial robots are widely used in both fields such as
manufacturing, assembly, packaging, transportation, surgery,
and Earth and space exploration due to their low long-term
cost and high accuracy and reliability.

There are different types of robots available, which can



be grouped into several categories depending on their move-
ment, Degrees of Freedom (DoF), and function. Articulated
robots, are among the most common robots used today.
They look like a human arm and that is why they are
also called robotic arm or manipulator arm. In some con-
texts, a robotic arm may also refer to a part of a more
complex robot. A robotic arm can be described as a chain
of links that are moved by joints which are actuated by
motors. We will start from a brief explanation of these
mechanical components of a typical robotic manipulator
[3,4]. Figure 1 shows the schematic diagram of a simple two-
joint robotic arm mounted on a stationary base on the floor.
Robotic manipulation task[26] has been tackled from various
aspects, including object and environment representation,
compositional and hierarchical task structures, characterizing
skills by preconditions and effects[4], skill policies[1], and
transition models[37].

Tsallis entropy regularization is a generalized form of
Shannon-Gibbs entropy and was successful in creating
sparsely stochastic policies rather than "dense" policies. In
many application, the policy need not become dense, since
there may be some optimal paths to accomplish the task.
Tsallis reinforcement learning has been presented as a unified
framework in [27] and [28]. The proposed framework is
formulated as a new class of Markov decision process using
Tsallis entropy maximization called Tsallis MDP. Tsallis
entropy essentially generalizes classes of entropy, includ-
ing standard Shannon-Gibbs (SG) entropy, by controlling
a parameter called the entropy index, and Tsallis MDP
introduces a unified view of the various uses of entropy
in RL. Tsallis MDP’s different entropy indices provide a
comprehensive analysis of how to generate different types of
optimal policies and Bellman optimal equations. The theoret-
ical results allow us to interpret the results of various types of
entropy normalization in RL. In particular, different optimal
policies due to entropy indices provide different exploration-
exploitation trade-off behavior because the entropy indices
affect the probability of that optimal policy. This feature is
actually highly desirable as the sample complexity is highly
affected by the exploration-exploitation trade-off and can
provide systematic control over the trade-off by controlling
the entropy index.

MUSIC was the first fully intrisically motivated explo-
ration method on robotic manipulation task, however did per-
form well only on FetchPush-v1 with 95% success rate, but
not on FetchPickAndPlace-v1(53%) or FetchSlide-v1(28%).
The main results have been produced with using DDPG[29]
and SAC[18]. The paper tries to encourage exploration via
having the additional entropic term from [18]. However
although exploration is necessary and "dense" policies do
leave space for exploration, the stochasticity of its policy
need not be dense and be open to all modes of actions in
the real world. This paper attempts to reduce such dense
entropy into a sparse one and the results have shown faster
convergence and/or better success rate.

Fig. 1. Diagram of the MUSIC algorithm. Agent learns the policy(SAC,
DDPG) and the Mutual Information Estimator together. The estimator
utilizes the division of surrounding state and the agent state. Unsupervised
MUSIC version is first trained in advance for 50 epochs to learn the MI
estimator and then used for exploration afterwards.

II. PRELIMINARIES

A. Reinforcement Learning Setting

A Markov decision process(MDP) is defined as a tuple
M = S,A, d, P, γ, r, where S is the state space, F is the
corresponding feature space, A is the action space, d(s) is
the distribution of an initial state, P (s′|s, a) is the transition
probability from s ∈ S by taking a ∈ A, γ ∈ (0, 1)
is a discount factor, and r is the reward function defined
r(s, a, s′) , E[R|s, a, s′] with random reward R. In Tsallis
MDP, this r is assumed to be bounded. Then, the MDP
problem can be formulated as :

maxπ∈ΠEπ[Σ∞t γ
tRt], (1)

where Σ∞t γ
tRt is a discounted sum of rewards, also called

a return, Π = {π|∀s, a ∈ S × A, π(a|s) ≥ 0,Σaπ(a|s) =
1} is a set of policies, and τ is a sequence of state-action
pairs sampled from the transition probability and policy, i.e.,
st+1 ∼ P (·|st, at), at ∼ π(·|st) for t ∈ [0,∞] and so ∼ d.
For a given π, we can define the state value and state-action
(or action) value as V π(s) , Eτ∼P,π[Σ∞t γ

tRt|so = s] and
Qπ(s, a) , Eτ∼P,π[Σ∞t γ

tRt|so = s, ao = a], respectively.
The solution of an MDP is called the optimal policy π∗. The
optimal value V ∗ = V π

∗
and the action-value Q∗ = Qπ

∗

satisfy the Bellman optimality equation as follows: For ∀s, a,

Q∗(s, a) = Es′∼P [r(s, a, s′) + γV ∗(s′)] (2)

V ∗(s) = maxa′Q
∗(s, a′), π∗ ∈ argmaxa′Q∗(s, a′) (3)

where argmaxa′Q∗(s, a′) indicates a set of the policy π
satisfying Ea∼π[Q∗(s, a′) = maxa′Q

∗(s, a′) and a ∼ π∗

indicates a ∼ π?(·|s). Note that there may exist multiple
optimal policies if the optimal action value has multiple
maximum with respect to actions.



B. Agent State, Surrounding state and Mutual Information
Reward Function

In MUSIC[46], the state is division into surrounding state
ss and agent state sa. Agent state refers to the state variable
for the agent, whereas the surrounding state means the state
variable that described the surroundings of the agent, such
as the state variable of an object as is shown in Figure 1. For
multi-goal environments, the assumption from [35] and [3] is
applied that goals can be represented as states. Goal variable
is denoted as g. For example, in the manipulation task, a goal
is a particular desired position of the object in the episode.
These desired positions are sample from the environment.
The division between the agent and the surrounding state is
naturally defined by the agent surrounding separation concept
derived from psychology.

C. Tsallis Entropy Regularization and Tsallis Actor Critic

Before defining Tsallis entropy, let us first introduce
variants of exponential and logarithmic functions, called
q-exponential and q-logarithmic respectively. It is used to
define the Tsallis entropy and is defined as:

expq(x) , [1 + (q − 1)x]
1
q−1

+ , lnq(x) , (xq−1 − 1)/(q − 1)
(4)

where [x]+ = max(x, 0) and q is a real number. Note
that, for q=1, q-logarithm and q-exponential are defined as
their limitations, i.e., ln1(x) , limq→1lnq(x) = ln(x) and
exp1(x) , limq→1expq(x) = exp(x). Furthermore, when
q=2, exp2 and ln2 become a linear function. This property
gives some clues that the entropy defined using lnq(x) will
generalize the SG (or ST) entropy and, furthermore, Tsallis
entropy regularization method can generalize an actor critic
method using SG entropy and ST entropy.

The definition of Tsallis entropy of a random variable X
with the distribution P is defined as follow:

Sq(S) , EX∼P [−lnq(P (X))], (5)

where q is called an entropic index. The Tsallis entropy can
represent various types of entropy by varying the entropic
index. For example, when q → 1, S1(P ) becomes the
Shannon-Gibbs entropy and when q = 2, S2(P ) becomes
the sparse Tsallis entropy. Furthermore, when q →∞, Sq(P )
converges to zero. For q > 0, the Tsallis entropy is a concave
function with respect to the density function, but, for q ≤ 0,
the Tsallis entropy is a convex function.

[27] clearly drives the optimality conditions and lays out
the algorithms generalized for the entropic index. First, we
extend the definition of the Tsallis entropy so that it can
be applicable for a policy distribution in MDPs. The Tsallis
entropy of a policy distribution π is defined by

S∞q (π) , Eτ∼P,π[Σ∞t=0γ
tSq(π(·|st))]. (6)

Using S∞q , the original MDPs can be converted into Tsallis
MDPs by adding S∞q (π) to the objective function as follows:

maxπ∈ΠEτ∼P,π[Σ∞t γ
tRt] + αS∞q (π), (7)

where α > 0 is a coefficient. A state value and state-action
value are redefined for Tsallis MDPs as follows: V πq (s) ,
Eτ∼P,π[Σ∞t γ

t(Rt + αS∞q (π(·|st))|s0 = s] and qπq (s, a) ,
Eτ∼P,π[R0 + Σ∞t γ

t(Rt + αS∞q (π(·|st))|s0 = s, a0 = a],
where q is the entropic index. The goal of a Tsallis MDP is
to find an optimal policy distribution that maximizes both the
sum of rewards and the Tsallis entropy whose importance is
determined by α.

III. METHOD

A. MUSIC Algorithm

The Mutual Information State Intrinsic Control has four
variants as described in [46]. The original MUSIC method is
an unsupervised reinforcement learning approach, which is
denoted as “MUSIC-u”, where “-u” stands for unsupervised
learning. Three additional methods are introduced using
MUSIC to accelerate learning. The first method is using the
MUSIC-u pretrained policy as the parameter initialization
and then fine-tuning the agent with the task rewards. This
variant is denoted as “MUSIC-f”, where “-f” stands for fine-
tuning. The second variant is to use the MI intrinsic reward
to help the agent to explore more efficiently. Here, the MI
reward and the task reward are added together. This method
is referred to as “MUSIC-r”, where “-r” stands for reward.
The third approach is to use the MI quantity from MUSIC to
prioritize trajectories for replay. The approach is similar to
the TD-error-based prioritized experience replay (PER)[38].
The only difference is that we use the estimated MI instead
of the TD-error as the priority for sampling. We name this
method as “MUSIC-p”, where “-p” stands for prioritization.
In this project, experiments will be on MUSIC-r, the intrinsic
reward version of the MUSIC algorithm as is shown in Figure
2.

Fig. 2. The MUSIC algorithm

B. Actor-Critic Changes to Tsallis Actor-Critic

Tsallis Actor Critic was implemented using entropic index
as a variable. Similarly to SAC, TAC algorithm maintains five
networks to model a policy πφ, state value Vφ, target state



value Vφ− , two state action values Qθ1 and Qθ1 . We also
utilize a replay buffer D which stores every interaction data
(st, at, rt+1, st+1).

To update state value network Vψ , we minimize the
following loss,

Jψ = Est,at∼B[(yt − Vψ(st))
2/2] (8)

where B ⊂ D is a mini-batch and yt is a target value defined
as yt = Qmin(st, at)−α lnq(πφ(at|st)), and Qmin(st, at) =
min[Qθ1(st, at), Qθ2(st, at)]. The technique using the min-
imum state action value between two approximations of Qπ

is known to prevent overestimation problem and makes the
learning process numerically stable. After updating ψ,ψ−

is updated by an exponential moving average with a ratio τ .
For both θ1 and θ2, we minimize the following loss function,

Jθ = E
bt∼B

[(Qθ(st, at)− rt+1 − γVψ−(st+1))2/2 (9)

where bt is (st, at, st+1, rt+1). This loss function is in-
duced by the Tsallis policy evaluation step. When updating
an actor network, we minimize a policy improvement objec-
tive defined as

Jφ = E
st∼B

[ E
a∼πφ

[α lnq(πφ(a|st))−Qθ(st, a)]] (10)

Note that a is sampled from πφ not a replay buffer. Since
updating Jφ requires to compute a stochastic gradient, we
use a reparameterization trick similar to [18] instead of a
score function estimation. In our implementation, a policy
function is defined as a Gaussian distribution defined by a
mean µφ and variance σ2

φ. Consequently, we can rewrite Jφ
with a reparameterized action and a stochastic gradient is
computed as

∇φJφ = E
st∼B

[ E
ε∼Pε

[α∇φ lnq(πφ(a|st))−∇φQθ(st, a)]]

(11)

where a = µφ + σφε and ε is a unit normal noise.
The MUSIC algorithm used TAC in the place of Soft

Actor-Critic in the original implementation. This included
making q, entropic index as an input as a variable to the
graph.

IV. EXPERIMENTS

MUSIC-u was trained for 50 epochs with q=1, and then
MUSIC-r(the exploration with Mutual Information as re-
ward) was trained for another 50 epochs with FetchPush-
v1, FetchPickAndPlace-v1, FetchSlide-v1. TAC+MUSIC
showed faster convergence in FetchPush-v1, exceeded per-
formance of FetchPickAndPlace-v1 and FetchSlide-v1 as
shown in Figure 4, 5, 6 respectively. q=1.5 was observed to
perform well on these task whereas q=2.0 showed reduced
performance than q=1.5 and even q=1.0(SAC) as shown in
Figure 7.

Fig. 3. The Tsallis Actor Critic algorithm

Fig. 4. TAC+MUSIC showed faster convergence to 85% success rate than
SAC+MUSIC

Fig. 5. TAC+MUSIC performance exceeded that of SAC+MUSIC.



Fig. 6. TAC+MUSIC performance was comparable to that of SAC+MUSIC

Fig. 7. q=2.0 underperformed q=1.5. This shows that there is an optimal
point between q=1.0 and q=2.0 that controls the optimal sparsity of the
policy for the robot on robotic manipulation tasks

V. RELATED WORKS

Exploration in reinforcement learning has recently seen
huge progress and breakthrough. Exploration-Exploitation
has long been searched and studied by RL researchers, but
the use of deep learning has boosted its performance and
enabled various techniques. Classical exploration strategies
include epsilon-greedy where the agent takes a random action
with probability of ε, upper confidence bounds where the
agent selects the greediest action to maximize the upper
confidence bound of the q-function and thompson sampling
where the agent keeps track of a belief over the distribution
of optimal actions and samples from this distribution.

After the introduction of neural network as a function
approximators, [18] introduced and entropy term H(π(a|s))
into the loss function, encouraging the policy to take diverse
actions when given a state. [36] and [15] introduced noise
into the action, observation and also the parameter space to
increase uncertainty and encourage exploration. Along the
lines of upper confidence bounds, uncertainty has also been
a crucial factor in exploration. [30] uses ensembles network
and uses its output to measure uncertainty of q-value for each
action and choose the one with the highest uncertainty.

Intrinsic motivation which was first shed light on from
psychological viewpoint [32] has provided a great insight
into how an agent could learn in a sparse reward environ-

ment. [23] proposed the idea of empowerment of the agent
as a measure for intrinsic motivation. Started as a thought
experiment in [11] the Noisy-TV problem has posed an
important question of how to get past noisy unpredictable
environment to make more meaningful progress by itself.
Using density models for the count, [9] [31] proposed
counting the number of states the agent has visited and using
it as additional intrinsic motivation. The less it has visited
in the past, the more chance the agent has to take action
towards such state. [31] used PixelCNN as density models.
Hashing after counting was proposed which used locality-
sensitive hashing in [42] and autoencoders were used for
raw pixel inputs.

Prediction was also widely used to generate intrinsinc
motivation. [41] trained a forward dynamics model in the
encoding space and the encoding function was learned via
an autoencoder. In an attempt to replace autoencoders, [33]
proposed Intrinsic Curiosity Module(ICM) which learns the
state space encoding with a self-supervised inverse dynamics
model. [10] showed that the idea of pure intrinsic motivation
could be sufficient to provide compact, sufficient and stable
forward dynamics of the environment. Variational Infor-
mation(Information Gain) of the forward dynamics model
was maximized in [22] to provide intrinsic motivation. KL-
Divergence was used upon computing the intrinsic reward.
Multiple forward dynamics was used in [34] to use dis-
agreements between the models as intrinsic reward, which
was differentiable thus allowing gradient descent through
the ensembles. [11] uses random network distillation(RND)
to capture the error between the predicting neural network
f̂(st) and the fixed randomly initialized neural network
f(st). If the discrepancy is high it means the state the agent
is currently in is novel and needs to be further explored.
Such idea was built upon by [6] and [5] where the former
structured the intrinsic reward in two levels: episodic re-
ward utilized random network distillation as lifelong novelty
reward and inverse dynamics feature to compute episodic
reward. [6] used LSTM[21] and further utilized Recurrent
Experience Replay[24] to store episodic memories. [5] added
multi-armed bandits to incorporate universal value function
approximators[19] for controlling the ratio between lifelong
novelty and episodic novelty.

Mutual Information was shed light upon as a tool for
exploration by [7], [20], [44]. In MUSIC[46], MI quan-
tity I(Ss;Sa) was approximated using lower bound in
the Donsker-Varadhan representation with the compression
lemma in the PAC-Bayes literature. [25] uses mutual infor-
mation as intrinsic motivation and has seen boosts in per-
formance in Atari-games and continuous control tasks.[13]
proposed feature control as intrinsic motivation and shows
stat-of-the-art results in montezuma’s revenge.

unsupervised learning provides a fresh view on learning
skills and using goal-conditioned learning. [14] was success-
ful at discovering skills that are task-agnostic, which could be
further used for specific tasks. [17], [12] is also succeeded in
extracting meaningful skills in a given environment. Intrinsic
motivation was also utilized in learning goal-conditioned



policies. DISCERN[45] learns a MI objective between states
and goals. MUSIC[46] was combined with DISCERN to
gather mutual information between the surrounding state and
the agent state, and mutual information between the state
overall and the goal.

Sparse Markov Decision Process(MDP) was proposed in
[27] as a generalized form of Shannon-Gibbs entropy. Sparse
MDP generalizes the concept with and index called entropic
index, q , which enables the the sparsity of the policy
to be manipulated. Tsallis entropy regularization was fully
introduced in reinforcement learning with [28], in which was
provided dynamic programming methods for Tsallis MDPs
and Tsallis Actor Critic, which various experimental results
that provided improvements with linear increasing of q, the
entropic index.

VI. CONCLUSIONS

Exploration in a reinforcement learning environment is a
challenging task. Although many exploration tasks were pro-
posed to learn useful representation or the dynamics model
that could guide the agent for a better exploration scheme
and succeeded, most exploration research were conducting
in Atari-game environments or continuous control problem.
Robotic manipulation tasks pose greater challenges than the
currently focused exploration environments in that the reward
is very sparse in terms of the time horizon, but the entropy
involved in the policy is still high, which is not optimal
considering the fact that most robotic manipulation tasks do
have few - but not one - optimal trajectories that performs
the task successfully. We empirically show that changes in
the entropic index could lead to higher sparsity in the final
policy of the agent, thereby ensuring that the robot take the
most efficient and effective actions towards accomplishment
of the task. Future work still remains for a further careful
manipulation of the entropic index, q, so that the agent could
control the pace at which the policy is learning a stochastic
policy. Moreover, incorporating the level of uncertainty of
actions using mutual information and exploring using sets of
skills discovered with MUSIC-p could also aid in exploring
the environment.
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